Minimizing Learned Clauses

Niklas Sörensson ¹ Armin Biere ²

Chalmers University of Technology, Göteborg, Sweden
Johannes Kepler University, Linz, Austria

SAT'09

Twelfth International Conference on Theory and Applications of Satisfiability Testing

Swansea, Wales, United Kingdom

Wednesday, July 1st, 2009

[BeameKautzSabharwal-JAIR'04] variation, independently discovered

Two step algorithm:

- 1. mark all variables in 1st UIP clause
- 2. remove literals with all antecedent literals also marked

Correctness:

- removal of literals in step 2 are self subsuming resolution steps.
- implication graph is acyclic.

Confluence: produces a unique result.

[MiniSAT 1.13]

Four step algorithm:

- 1. mark all variables in 1st UIP clause
- 2. for each candidate literal: search implication graph
- 3. start at antecedents of candidate literals
- 4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is "pulled in"

		solved		time		space		out of		deleted
		instances		in hours		in GB		memory		literals
MINISAT	recur	788	9%	170	11%	198	49%	11	89%	33%
with	local	774	7%	177	8%	298	24%	72	30%	16%
preprocessing	none	726		192		392		103		
MINISAT	recur	705	13%	222	8%	232	59%	11	94%	37%
without	local	642	3%	237	2%	429	24%	145	26%	15%
preprocessing	none	623		242		565		196		
PICOSAT	recur	767	10%	182	13%	144	45%	10	60%	31%
with	local	745	6%	190	9%	188	29%	10	60%	15%
preprocessing	none	700		209		263		25		
PICOSAT	recur	690	6%	221	8%	105	63%	10	68%	33%
without	local	679	5%	230	5%	194	31%	10	68%	14%
preprocessing	none	649		241		281		31		
	recur	2950	9%	795	10%	679	55%	42	88%	34%
altogether	local	2840	5%	834	6%	1109	26%	237	33%	15%
	none	2698		884		1501		355		

10 runs for each configuration with 10 seeds for random number generator

		MINISAT										
		with preprocessing										
		seed	solved	time	space	mo	del					
1.	recur	8	82	16	19	1	33%					
2.	recur	6	81	17	20	1	33%					
3.	local	0	81	16	29	7	16%					
4.	local	7	80	17	29	8	15%					
5.	recur	4	80	17	20	1	33%					
6.	recur	1	79	17	20	1	33%					
7.	recur	9	79	17	20	1	34%					
8.	local	5	78	18	29	7	16%					
9.	local	1	78	17	29	6	16%					
10.	recur	0	78	17	20	1	34%					
11.	recur	5	78	17	19	1	33%					
12.	local	3	77	18	31	7	16%					
13.	local	8	77	18	30	8	16%					
14.	recur	7	77	17	20	1	34%					
15.	recur	3	77	17	20	1	34%					
16.	recur	2	77	17	20	2	33%					
17.	none	7	76	19	39	9	0%					
:	:	į	÷	ŧ	:	ŧ	:					

• first proper description of original MiniSAT 1.13 minimization algorithm

• extensive experimental results:

minimization is effective and efficient

• substantial statistical variance in running SAT solvers

• how to use clauses not in the implication graph

[AudemardBordeauxHamadiJabbourSais SAT'09]

how to use intermediate resolvents

[HanSomenzi SAT'10]

how to extract resolution proofs directly [VanGelder SAT'10] next talk